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Extremal Bounds on Earthquake Movement from Geodetic Data: 

Application to the Landers Earthquake 

by H a d l e y  O. Johnson ,  D u n c a n  Carr  A g n e w ,  and Ken  H u d n u t  

Abstract We present a technique to place quantifiable bounds on the moment 
of an earthquake from geodetic data, assuming known fault geometry. Appli- 
cation of this technique to the 1992 Landers earthquake shows that the moment 
must have been between 0.84 and 1.15 x 1020 Nm with 90% confidence (M 
7.25 to 7.34). We also find that to satisfy the data to this same level of  con- 
fidence, the slip on the fault must have exceeded 7 m in at least one location, 
in good agreement with field mapping of the surface rupture. 

Introduction 

The release of stress in an earthquake causes both 
slip on the earthquake fault and deformation of the ground 
in the region around it; these are usually taken to be re- 
lated through elastic dislocation theory. It is thus pos- 
sible, in principle, to use the displacements of points at 
the ground surface to estimate characteristics of the sub- 
surface slip on the fault. A variety of techniques have 
been employed for this (Ward and Barrientos, 1986; Harris 
and Segall, 1987; Segall and Harris, 1987; D u e t  al., 
1992). We present a technique that is based on the same 
fundamental principles as these, but whose final product 
is a bound on the moment of the earthquake, rather than 
a model of the fault-slip distribution. Our technique is 
similar to the methods of Langbein (1981) and Vasco 
(1985). We have applied this technique to the 1992 Lan- 
ders earthquake and present results from two different 
data sets, one from a preliminary set of measurements 
made soon after the earthquake, and the other from a 
much more extensive network of stations, including dis- 
placement results from many research organizations. This 
slightly unusual presentation is used to demonstrate in a 
more realistic way the ability of this technique to pro- 
duce useful results both soon after and well after a large 
earthquake. 

In their studies, Langbein (1981) and Vasco (1985) 
both used the linear programming (LP) framework to de- 
termine extremal fault-slip models, but each used the so- 
called infinity-norm as their measure of model misfit as 
opposed to the more typical two-norm (i.e., least squares). 
To minimize the infinity-norm misfit between predicted 
values and measured data means to minimize the max- 
imum model misfit. That is, the modeled residual which 
is the worst fit to the actual measurements is minimized, 
a procedure that is extremely sensitive to data outliers. 
In this study we also use the LP framework, but use the 
one-norm as our measure of model misfit. The one-norm 

is more robust than either the two-norm or infinity-norm 
in the presence of noisy data, and is inherently much less 
variable as a statistical estimator than the infinity-norm 
(Parker, 1994). 

Technique 

To invert geodetic data for a subsurface slip distri- 
bution, we must first be able to perform the forward cal- 
culation relating fault slip to surface deformation. For 
this purpose, we model the earth as an elastic half-space. 
Standard methods exist for computing the response to 
slip on a dislocation surface for this model (Okada, 1985; 
Erickson, 1986). We have also assumed that the ge- 
ometry of the fault is known; for the Landers earthquake 
this is a good assumption, given the coincidence of the 
surface rupture and the aftershock zone. Figure 1 shows 
the Landers surface rupture (K. Sieh, personal comm.); 
our simplified version of the fault trace is composed of 
1-km-long straight segments and extends south of the 
Pinto Mountain fault to include the Eureka Peak fault, 
for a total length of 92 km. The assumed fault plane 
extends from the surface to a depth of 15 km, also in 1- 
km increments, and dips 90 °, resulting in a total of 1,380 
model elements, each 1 km on a side. Figure 1 also shows 
the location and horizontal displacement vectors of the 
11 geodetic stations from the preliminary data set, whose 
co-seismic displacements we seek to model (see Fig. 5 
for a map view of the larger network). 

Given the relative locations of the fault "patches" 
and geodetic stations, we begin the inversion process by 
calculating the displacements resulting from a unit-slip 
on each patch. (We have assumed that the slip was purely 
horizontal for the Landers event, though any slip direc- 
tion, from thrust to normal, could have been consid- 
ered.) The resulting Green's function matrix, G, can then 
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Figure 1. Overview of the Landers and Big Bear 
rupture area. The discretized fault plane used for 
this study is shown as 1-km-long segments ex- 
tending for a total length of 92 km. The Big Bear 
fault plane is defined by its aftershock distribu- 
tion. The 11 geodetic stations which make up what 
we call the "small network" are shown along with 
their co-seismic displacements and 95% confi- 
dence regions. 

be used to relate the slip model, g, to the measured sta- 
tion displacements, d, by: 

d = Gg + e, (1) 

where • is the discrepancy between the measured dis- 
placements and those predicted from g. 

Since the number of  fault patches greatly exceeds 
the number of  input data [there are a total of  27 data in 
the smaller network (Fig. 1) and 101 data in the larger 
network (Fig. 5)] there are an infinite number of slip 
models which can exactly reproduce the offsets; that is, 
satisfy equation (1) with • = 0. In addition, since there 
are errors in the measured offsets, we should actually 
investigate all models that adequately match the data, 
not just those that match the data exact ly-- thus further 
expanding the range of  acceptable models, There are a 
variety of ways to restrict the range of models in rea- 
sonable ways so that we determine a single, preferred, 
slip model (Matthews, 1991; Du et al., 1992; Parker, 
1994). Here, instead of inverting for a single slip model, 
we wish to invert for a bound on a particular property 
of  the slip model that all acceptable models must satisfy. 

More specifically, we wish to find the largest and small- 
est possible moment consistent with the data. These 
bounds on moment will be valid for all possible slip 
models regardless of  the kind of data used to construct 
these models (e.g., geodetic, seismic, strong motion, or 
combinations), recognizing that our technique is based 
on the following assumptions: that the earth may be 
modeled as a homogeneous elastic half-space, that the 
location of the fault plane is known, and that the fault 
slip was purely horizontal. 

To determine these bounds, we add the following 
two sets of constraints to equation (1): that the elements 
of the slip model g are all positive (thus allowing only 
right-lateral slip) and that the moment be some set value 
Mo. Our inversion problem is then stated: 

minimize F = [ [ ~ - ' ( d  - G )II, (2) 

n 

subject to pA ~ ~, = M0 and 0 =< si ~ Ui,  (3) 
i= 1 

where ~ is the covariance matrix (found from the esti- 
mated errors in the data), A is the area of each fault patch 
(106 mZ), u is a vector of upper bounds on the amount 
of slip allowed on each model element, and the model 
misfit is measured using the one-norm. Statistics for the 
one-norm misfit are not widely available, but a small 
table of  values and a procedure for calculating others is 
contained in Parker and McNutt (1980). We next choose 
an appropriate confidence level, such as 90%, and de- 
termine the misfit value corresponding to this probabil- 
ity. If the slip model that solves equations (2) and (3) 
produces a value of F less than this acceptance level, 
then at least one slip model (and possibly an infinite 
number) exists that adequately predicts the measured data, 
is made up of patches of only right-lateral horizontal slip, 
and has the given moment. If the smallest model misfit 
is larger than this acceptance level, we can say no such 
model exists (at the 90% confidence level), and the as- 
sumed value of the moment is thus inconsistent with the 
data. Any of the constraints could, in fact, be called into 
question, but we believe the moment constraint is by far 
the least certain of the assumptions. By systematically 
varying the moment constraint, we can then determine 
the full range over which the problem has an acceptable 
solution at the chosen level of confidence. 

Equations (2) and (3) are almost in the form of an 
LP problem, but a few modifications are required. In the 
canonical LP problem a linear functional of the model 
elements is minimized subject to a set of equality and 
inequality constraints. Note that there is no mention of 
a norm in this formulation. In particular, the one-norm 
in equation (2), with its absolute value function, is cer- 
tainly not a linear functional of g. By introducing two 
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new sets of variables, however, we can bring the one- 
norm misfit in line with LP (Wagner, 1959). Let 

]~ -1  ( d  - G g )  = z '  - z "  (4) 

o _-__ z; (5) 

0 _-< z" (6) 

so that the model residuals are written as the difference 
between two positive numbers. Now, instead of mini- 
mizing the norm in equation (2), we minimize the sum 
of z' and z" and use equations (4) through (6) as addi- 
tional constraints on the original problem [this counter- 
intuitive procedure is discussed in Wagner (1959)]. The 
full problem is now written 

m 

minimize F =- ~ (z" + z;') (7) 
i=1 

subject t o  ~ - 1  G s  --~ g t - z "  = ~ - 1  d (8) 

n 

/ ,a  ~ g, = Mo (9) 
i~ l  

0 -< gi - u~ (lOa) 

0 - z[ (10b) 

o <- z", ( lOc)  

where the LP algorithm must now determine all n ele- 
ments of the slip model as well as the m elements each 
of z' and z"--the one-norm is thus incorporated at the 
expense of adding 2m new variables to the problem. As 
before, we can now sweep through a series of moment 
constraints looking for the points where F in equation 
(7) is equal to the 90% confidence level for the one-norm 
statistic. 

We have solved equations (7) through (10) using the 
LP algorithm contained in Numerical Recipes (Press et 
al., 1987, pp. 312-325), but this algorithm does not have 
the ability to incorporate upper bounds on the slip-model 
elements directly [right half of equation (10a)], and so 
these constraints must be explicitly added to the prob- 
lem, resulting in a total of n + m + 1 constraints instead 
of the m + 1 represented by equations (8) and (9) [con- 
straints in equations (10b) and (10c) are taken care of 
automatically by the LP code]. This slows the solution 
almost impossibly, and so in addition, we have used the 
BVLS code of Stark and Parker (1993) to solve this prob- 
lem. The BVLS code is based on the NNLS algorithm of 
Lawson and Hanson (1974), but has been modified to 
incorporate model-constraint upper bounds automati- 

cally, thus speeding the solution greatly (by a factor of 
nearly 20 in this case). Unfortunately, BVLS is based on 
quadratic programming instead of linear programming. 
In a manner similar to our incorporation of the one-norm 
into the standard LP problem, it is possible to "fool" the 
BVLS algorithm into solving our linear problem by add- 
ing even more variables, as discussed in Stark and Par- 
ker (1993). This is our preferred method of solving equa- 
tions (7) through (10). 

As already stated, the studies of Langbein (1981) 
and Vasco (1985) used the infinity-norm as the measure 
of model misfit. For comparison with our one-norm re- 
sults in the next section, we have implemented a version 
of LP incorporating the infinity-norm. In our notation, 
this problem is written as follows [compare with equa- 
tions (1) through (4) of Langbein (1981)]: 

minimize F - II -'(a - G )II  (11)  

n 

/aA ~ g~ = M0 (12) 
i=1 

0 <_- (13)  

For the normalized infinity-norm misfit, the appropriate 
90% confidence level for 27 data would be F = 2.887. 
That is, all acceptable slip models will satisfy equations 
(12) and (13) and possess a "size," as measured by equa- 
tion (11), of less than or equal to 2.887. (For a problem 
with m data, and independent errors, we are interested 
in the joint probability that all m residuals, as defined in 
equation (11), lie within their 90% confidence regions-- 
this is simply the product of the individual probabilities. 
In this case, the joint probability that 27 data lie within 
2.887 standard deviations of their means is 90%.) 

Results  for a Small  Geodetic Network 

The preliminary displacements of the 11 geodetic 
stations shown in Figure 1 were obtained from the U.S. 
Geological Survey (USGS) in Menlo Park and the South- 
ern California Earthquake Center (SCEC) soon after the 
Landers earthquake in the summer of 1992. Five of these 
co-seismic offsets were measured by the USGS, using 
data from the global positioning system (GPS), and re- 
duced using broadcast orbits for the satellites and the 
Bernese processing software. These offsets are relative 
to a station near Palm Springs, California (RESORT-- 
just off the bottom edge of Fig. 1). The remaining six 
stations were monitored by SCEC and reduced using sat- 
ellite orbits calculated from a global GPS network and 
the GAMIT processing software. These offsets are rela- 
tive to the Permanent GPS Geodetic Array site at Pifion 
Flat Observatory (PFO) (Shimada and Bock, 1992). To 
bring these two sets of data into a common global ref- 
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erence frame, we have used a model-predicted offset be- 
tween the stations RESORT and PFO (PFO moved west- 
northwest by about 0.5 cm relative to RESORT), and then 
used the results of  Bock et al. (1993) for the co-seismic 
motion of station PFO relative to the global network. Be- 
cause of the multiple ties and the preliminary nature of  
the GPS analyses, we have used conservative error es- 
timates: --+1 cm for both horizontal directions and +3  
cm vertically for the SCEC results, and ---2.5 cm hori- 
zontally and +4  cm vertically for the USGS results. 

The Big Bear earthquake (M 6.2), which occurred 
a few hours after the Landers earthquake, presents a 
complication to this procedure. Because all of  the post- 
earthquake GPS surveys were conducted after both earth- 
quakes occurred, they actually measure the sum of  the 
displacements from the earthquakes. We have experi- 
mented with several synthetic data sets to determine if 
the moments of  the two earthquakes can be solved for 
simultaneously. This does not appear to be possible. An- 
other option would be to remove the predicted defor- 
mation caused by the Big Bear event from the data be- 
fore proceeding with the inversion. In light of the relative 
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Figure 2. Slip-model probability plotted as a 
function of the total geodetic moment release for 
the small network. The vertical axis is the prob- 
ability that the model misfit would be as small or 
smaller exclusively because of random fluctua- 
tions. Values plotted below the horizontal dashed 
line are thus statistically consistent with the un- 
certainties in the co-seismic offset data at the 90% 
level. The separate curves show the results for dif- 
ferent upper limits imposed on the elements of the 
slip model. Taking 10 m of fault slip as a con- 
servative upper limit, the resulting 90% confi- 
dence limit on moment is 0.72 to 1.5 × 1020 Nm 
(M 7.2 to 7.4). 

sizes of  the two earthquakes (the Big Bear moment  re- 
lease was less than 4% of the Landers moment  release) 
and the preliminary nature of  the data, we have simply 
chosen to ignore the Big Bear event. 

Figure 2 presents our primary result, in the form of 
slip-model confidence levels as a function of  the earth- 
quake moment  M0. The horizontal dashed line is at the 
90% confidence level. Each curve gives the result for a 
different upper bound for the slip on all fault patches 
(equation 10a). As the upper bound is reduced from 1000 
to 10 m, and eventually to 4.9 m, the resulting 90% 
confidence limits on the moment  release (the range of 
moments over which the misfit curves fall below the 90% 
level) become smaller, until eventually the curve for a 
4.9-m upper bound just dips to the 90% level. Depend- 
ing on which upper limit we are willing to accept as the 
maximum slip that may have occurred (based on geo- 
logical evidence from this and other similar events), we 
end up with different bounds on the moment.  Taking the 
10-m upper bound as a reasonable but still conservative 
level, the 90% bound on moment  is about 0.72 to 1.5 
× 1020 Nm (M 7.2 to 7.4). The steepness of  these curves 
shows that this result is quite insensitive to the confi- 
dence level u sed - - the  95% limits would be nearly the 
same as the 50% limits. 

Another conclusion we can draw from this figure, 
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Figure 3. A comparison of the probability 
curves for the one-norm and infinity-norm for an 
upper-slip limit of 10 m. The infinity-norm is in- 
herently more variable as a statistical estimator and 
far less robust in the presence of data outliers. For 
these two reasons, the 90% confidence limits re- 
sulting from the one-norm calculations are pre- 
ferred. 
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also at the 90% confidence level, is that at least one fault 
patch must have slipped at least 4.9 m during the earth- 
quake, although we cannot say exactly where this patch 
was located. This agrees well with the surface-slip data, 
which show a maximum offset of between 5 and 6 m at 
points along the rupture zone (Sieh et al., 1993), thus 
validating our computational methods to a degree. 

For comparison, Figure 3 presents the difference be- 
tween the moment  limits for the one-norm and infinity- 
norm for a 10-m upper limit on each slip element. At 
the 90% level, the moment  limits for the infinity-norm 
are 0.8 to 1.4 x 1020 Nm; a smaller range than our one- 
norm result. These tight bounds are a result of  the nature 
of  the infinity-norm. Restricting the largest of  the mod- 
eled residuals to be within some strict confidence inter- 
val severely restricts the "freedom" of  the inversion rou- 
tine when compared to the group-fit philosophy resulting 
from the one-norm technique. Why would we prefer the 
looser bounds of the one-norm over the tighter bounds 
of the infinity-norm? As previously mentioned, the an- 
swer lies in the robustness of the one-norm and its smaller 
inherent variability. The robustness a rgument  is espe- 
cially significant in this case, since we are working with 

preliminary data gathered by several different groups and 
only loosely tied together into a common reference frame. 

To provide insight into how the inversion technique 
works, Figure 4 shows the best-fitting one-norm slip 
models at the lower and upper moment  limit for a 10-m 
upper bound on the maximum slip for all fault patches. 
While these slip models need bear no relationship what- 
soever to the actual slip that occurred during the earth- 
quake, they do help to understand the technique and also 
demonstrate the wide range of models which can fit the 
data. The distribution for the lower moment  limit has all 
of  the slip in two distinct clumps, with most of  the slip 
near the center of  the fault. This model is just able to 
adequately predict the measured surface displacements 
of  the geodetic stations. For the upper moment  limit we 
see a pattern of  subsurface slip which is almost a mirror 
image, with the inversion trying to hide as much slip as 
possible at depth and at places along the length of the 
fault away from the geodetic data coverage, although some 
surface slip is still required near the center of  the fault 
to satisfy the observations at stations MAUM and LAZY. 
As might be guessed, the upper moment  limit is some- 
what dependent on the maximum fault depth used in the 
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Figure 4. The slip models for the small network corresponding to the 90% 
confidence upper limit (top) and lower limit (bottom) on moment release, for the 
case where each individual element of the slip model is constrained to less than 
10 m of slip. The view is from the southwest side of the fault plane, with zero 
located at the epicenter. In the lower panel, in order to match the data, the in- 
version routine has placed all of the slip near the surface, resulting in a lower 
moment limit of 0.72 x 1020 Nm, while in the upper panel most of the slip is 
placed deep on the fault plane to try to "hide" it from the surface data, resulting 
in an upper moment limit of 1.5 x 1020 Nm. 
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slip models. Geodetic data are less able to constrain deep 
fault slip as opposed to shallow slip, simply because of  
the larger distances involved, and so the amount of  slip 
which can be hidden from the surface data increases as 
the fault deepens. Our 15-km depth limit was chosen 
based on seismological (Hauksson et al.,  1993) as well 
as historical evidence for the southern California region. 

Resul ts  for  a La rge  Geode t i c  N e t w o r k  

Figure 5 presents the large network configuration used 
in the second part of  this study. The data, in this case, 
consist of  the three-dimensional co-seismic displace- 
ments for 24 GPS sites distributed throughout the near- 
field region and tabulated in Hudnut et al. (1994), as 
well as the co-seismic line-length changes between the 
stations of  the USGS Geodolite trilateration network as 
reported by Murray et al. (1993) and corrected for sec- 
ular deformation as discussed by Hudnut et al. (1994). 
We have not included any of the far-field deformation 
data contained in Hudnut et al.,  to avoid possible dif- 
ficulties from layering effects as briefly discussed in Back 
et al. (1993). From this combined data set we have re- 
moved 13 vertical displacement measurements which have 
estimated errors of  more than 600 m m - - t h e s e  defor- 

mations were very poorly constrained owing to the na- 
ture of  the pre-earthquake GPS surveys, which were not 
conducted with precise geodetic applications in mind. 
With these removed we are left with 106 data. 

In addition to these 13 vertical displacement data, 
we found another five data which we regard as ques- 
tionable. All five data are related to the station LUCS in 
the western part of  the network (Fig. 5). In the course 
of trying to model the data, we found we had great dif- 
ficulty in this part of  the network. This problem was also 
noted by Murray et al. (1993) who resolved the problem 
by artificially increasing the uncertainties for several 
measurements in the area. Their tentative conclusion was 
that unmodeled slip on the Upper Johnson Valley fault 
was responsible for this misfit. We believe, however, 
that the problem lies with the station LUCS. The station 
log sheets from this site for the postearthquake GPS oc- 
cupations contain notes suggesting that the benchmark 
had been recently disturbed (J. Scott, personal comm.).  
At the time, there was no way to know when this had 
occurred, but we now believe that the benchmark (which 
is set in a concrete pillar projecting about 40 cm above- 
ground) was hit by a vehicle sometime between the pre- 
earthquake and postearthquake surveys. Our evidence 
comes from the model residuals for these five data, which 
suggest that the co-seismic displacement of  station LUCS 
in the north-south direction is much too small. To de- 
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Figure 5. Geodetic stations used in what we 
call the "large network." Stations shown as squares 
and connected by solid lines are part of the USGS 
trilateration network, while stations shown as tri- 
angles were measured using GPS. Five stations were 
both part of the trilateration network and moni- 
tored with GPS. 

Geodetic Moment  Release (1020 N - m )  

Figure 6. Slip-model probability plotted as a 
function of the total geodetic moment release for the 
large network. Only results for an upper slip con- 
straint of 10 m are plotted. The scales here are the 
same as Figure 2. The bound on acceptable mo- 
ment release is now considerably tighter than for the 
small network, resulting in a 90% confidence in- 
terval of 0.84 to 1.15 × 102° Nm (M 7.25 to 7.34). 
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termine this, we first removed the five data and calcu- 
lated a best-fit slip model. This model was then used to 
predict what these five data should have been in order 
to agree with the other 101 data. By comparing the pre- 
dicted data with the actual observations, which consisted 
of the NS and EW displacements from GPS and the 
changes in line length for three Geodolite lines, we are 
able to conclude that the benchmark was moved (non- 
tectonically) to the south by about 5 cm and to the west 
by about 1 cm. These values are in good agreement with 
the sketches of apparent disturbance in the GPS log sheets. 
In the end we feel there is sufficient evidence to remove 
these data from the inversion problem. With these data 
removed, there is no need to invoke slip on other faults. 
This is not to say that no slip occurred on other f au l t s - -  
there is, for example,  good evidence for at least some 
surface slip on the Lenwood fault (Padgett and Rock- 
well, 1993; Massonnet et a l . ,  1994)monly  that this col- 
lection of geodetic data does not require slip on any other 
faults to adequately fit the data. 

Since we are now working with a much more ex- 
tensive network of stations, the complication of the Big 
Bear earthquake must be dealt with in a different man- 
ner. Instead of ignoring this event, as was done before, 
we have chosen to model it and remove the model-pre- 
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Figure 7. Lower bound on the maximum 
amount of fault slip required by the large network. 
Smaller upper-slip constraints on the fault model 
lead to poorer fits to the measured surface defor- 
mation data. As this limit is lowered past 7 m, the 
best-fitting slip model results in a model misfit 
above the 90% level. From this we conclude (at 
a 90% level of confidence) that the 7 m upper-slip 
constraint is a bound and that at least one fault 
patch must have slipped more than this amount. 

dicted displacements from the data before inverting for 
the moment  constraints on the Landers event. The model 
we use is based on the aftershock distribution shown in 
Hauksson et al. (1993). We chose a vertical fault plane 
which passes through the hypocenter of  the event and 
extends from 1 km below the surface to a depth of 15 
km, with an along-strike dimension of 25 km and an 
azimuth of N43.4E. On this fault plane we place 0.35 
m of left-lateral slip, which results in a moment  release 
of  0.037 × 1020 Nm (M 6.3). This makes our model Big 
Bear earthquake slightly larger than the value deter- 
mined from seismic evidence by Hauksson et al. (1993). 
In fact, if we simultaneously invert the 101 geodetic data 
for the best-fitting slip model on both the Landers and 
the Big Bear fault planes, we would be led to an even 
larger moment  release for the Big Bear event. That is, 
the data set used here would suggest that the amount of  
slip on the Big Bear fault were larger than the seismo- 
logical results give. This is at least partly because we 
have used almost no data from the vicinity of  the Big 
Bear event and so the amount of  slip on this fault is 
poorly constrained. 

With the data set thus cropped and the effects of the 
Big Bear earthquake removed, we can now proceed to 
the moment  constraints for the Landers event. This result 
is presented in Figure 6 for the case of a 10-m slip con- 
straint on all patches on the Landers faul t - - th is  can be 
directly compared to the results in Figure 2. The bounds 
on the acceptable moment  release for the event are now 
considerably tighter than before, with the 90% confi- 
dence limits being 0.84 to 1.15 x 1020 Nm (M 7.25 to 
7.34). In calculating the results in Figure 6, we have 
continued to use the one-norm as our measure of  model 
misfit. We chose to continue with the one-norm for two 
reasons. First, so that the results in Figure 6 would be 
directly comparable to Figure 2, and second, because of 
our suspicion that there may still be undetected mea- 
surement errors or even monumenting problems (as with 
station LUCS) left in the data. By using the one-norm 
measure of  misfit, we are stating our belief that the mea- 
surement errors from both the GPS and the trilateration 
data are best described by a double-exponential distri- 
bution, as opposed to the standard assumption of a Gaus- 
sian distribution. The double-exponential distribution is 
more "heavy-tailed" than the Gaussian, and in our opin- 
ion more representative of  the errors expected in these 
real-world measurements. 

Figure 7 presents our bounds on the minimum value 
of the maximum amount of slip on the Landers fault. With 
90% confidence we can state that at least one patch of the 
Landers fault must have slipped at least 7 m during the 
earthquake. As with the results in Figure 6, the steepness 
of this curve means that the level of confidence we choose 
has only a small affect on this bound. Again, this can be 
compared to Figure 2, where we found a 90% bound of 
4.9 m. The largest amount of measured surface slip was 
about 6 m at Galway Lake Road (Sieh et a l . ,  1993). It is 
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not surprising that our slip limit is larger than the largest 
measured surface offset; in fact, it is quite reassuring that 
it is slightly larger. Because of the unconsolidated nature 
of the surface layers along the Landers surface rapture, we 
should expect the measured offsets to be lower limits on 
the actual amount of surface slip. In addition, it is quite 
reasonable to believe that the amount of fault slip at depth 
will be different from that at the surface. 

Conclusions 

The technique we have presented for bounding the 
geodetic moment of an earthquake is (we hope) a valu- 
able addition to the available seismic techniques. Geo- 
detic measurements have the unique ability to monitor 
the entire moment release, extending to the longest pe- 
riods, and are thus able to "see ~ the entire spectrum of 
co-seismic deformations. From a limited and prelimi- 
nary GPS data set, we have shown that the moment re- 
lease of the Landers earthquake was between 0.72 and 
1.5 × 1020 Nm (M 7.2 to 7.4) with 90% confidence. 
This bound demonstrates the ability of this technique to 
produce results soon after a large earthquake. With time, 
as additional data are collected and more exacting anal- 
yses are performed, this technique can place tighter bounds 
on the moment release, as demonstrated here with the 
larger data set. This data constrain the moment of the 
Landers earthquake to be within 0.84 and 1.15 × 1020 
Nm (M 7.25 to 7.34) with 90% confidence. 
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